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Air pollution has been a major problem in China

2

China World Trade	Center	Tower	III,	a	1,000	plus foot skyscraper	that’s	one	of	the	tallest	
in	Beijing.	Jan	12th,2013.	Photo	courtesy	of Bill	Bishop/Sinocism China	Newsletter

China	World Trade	Center	Tower	III,	Beijing



Data collected from urban monitoring systems

• However, few monitoring stations
• 15 stations in Hong Kong
• 35 stations in Beijing

• High cost for a city-wide monitoring system

3

Hong	Kong
http://www.epd.gov.hk(a) Shenzhen (b) Hong Kong

Air quality level

Hong Kong air mapShenzhen air map

Air quality level

Causality level

Low

Low High

High



What can urban big data do?

• 1. Millions of monitoring records in one city

• Two philosophies of big data processing:
• Process everything, with vast amount of computing resources.
• Process some of the data, with less computing resources, but get 

approximate results.
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Three	projects
• Causality-based	 air	quality	monitoring
• Causality-based	 air	quality	forecasting
• Identifying	the	causality	for	air	pollutants



1. Causality based air quality monitoring

1. Deal with data diversity

• Unification (𝑠, 𝑡, 𝑐)
2. Transform “Big data” into “most influential data” based on 
causality, regarding to:

• Category	𝑐.
• Space 𝑠.
• Time	𝑡.
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Map view of causality levels from all the 
other grids for a target grid 
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2. Causality based air quality forecasting

• Traditional time series models (ARMA, regression, SVM,ANN…)
• Physical models (Box model, dispersion model…)
• Causality model

• 1) Model the Gaussian mixtures
• 2) Use urban big data for better
parameter learning.
• A variable K that simultaneously
affects the dynamics of pollutants 
and environmental factors.
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(a) Original values normalized by standard deviation (b) Normalized 1-hour difference
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Method 1-hour prediction precision 
City  Station 

Our method 0.804 0.859 
Our method 
without coupling 

0.789 0.832 

Hill climbing 0.528 -- 
MCMC 0.597 -- 
K2 + PS 0.684 0.753 
CI test: 0.382 0.298 
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3. Identify the causality 	

   A) PM2.5 in Beijing and 5 neighbor cities          B) Relative locations and distances
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• Causality analysis with urban big data.
• Inform the public policy making
• Where do the pollutants come from?
• How much do they cause each other?

The time series of pollutants show similar trends 
even 300km far away!

Question is:
I know the air 
quality is bad, but I 
am living in Beijing. 
What can I do?
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We propose p-Causality: a pattern-
aided causality analysis approach.
• Combining the strengths of pattern mining and statistical modeling.

(a) Air quality monitoring stations (b) Meteorology stations

Air pollutants times series 
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Conclusion

• Air quality monitoring and causality analysis based on urban big 
data
• It is not needed process "all" the data. 
• Better precision and time efficiency can be achieved when 

transforming "big data" into "the most influential data".
• Open issues

• More and more spatiotemporal data generated every day, e.g., 
complex system and the internet of things (IoT). Data can advance 
research and industry like never before.

• Geographically sparse data
• Can the methodology be transferred to other types of data? How do 

we model these data?
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